Pamphlet M2404-1

GT5C

# TLV®

# PowerTrap.

CG25 PN1

E C

**Compact Mechanical Pump** with Steam Trap Designed to Eliminate Stall

53

# Stall-Eliminating Pump/Trap

for Small Steam-using Equipment

### Is Your Air Conditioner, Dryer or Heater Damaged?

Does it Exhibit Signs of Water Hammer, Corrosion or Uneven Heating? These problems could be caused by condensate accumulating in the equipment. This phenomenon is known as 'stall' and causes damage to equipment along with poor product quality if left untreated. As a steam trap cannot discharge condensate during a stall, further investment such as installing a vacuum pump in addition to the existing steam trap is required.

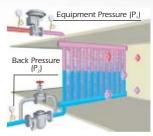


Air heater during the 'stall' phenomenon

### Discharging Condensate Even Without Pressure Differential

TLV developed the **PowerTrap** GT series combination mechanical pump and steam trap to overcome this challenge. The **PowerTrap GT5C** is a practical solution, featuring a linear inlet/outlet, low filling head, and simple piping installation, eliminating anxiety about stall in your small steam-using equipment.

### 'Stall' Phenomenon

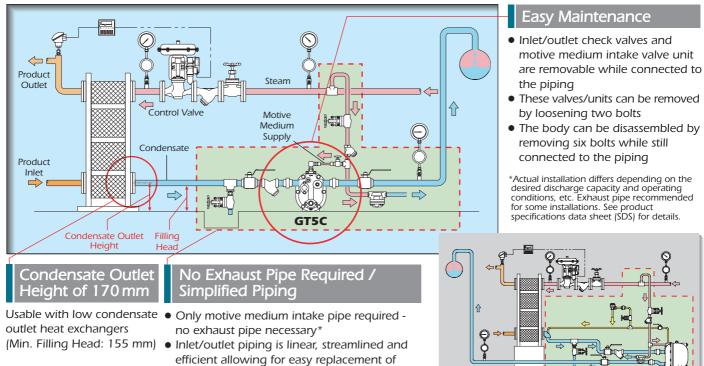

When the steam pressure inside a heat exchanger becomes lower than the outlet pressure (back pressure), condensate accumulates inside



the equipment without being discharged from the trap causing damage/breakage by water hammer, and holes by corrosion and/or uneven heating.

#### The Stall Mechanism

When load in the equipment decreases, the control valve throttles and the pressure inside the equipment drops. When pressure inside the equipment ( $P_1$ ) drops to back pressure ( $P_2$ ) or below, the condensate accumulates in the equipment, causing stall. It is most frequent during low-load operation.






# Compact Fusion of Mechanical Pump and Steam Trap with Low Filling Head

The **PowerTrap GT5C** is an incredibly compact mechanical pump with a steam trap not only discharging condensate when pressure inside the equipment is high, but also pumping out condensate by using steam as a motive medium when the pressure inside the equipment is low. The **GT5C** also enables simplified piping in comparison to existing mechanical pumps.

#### Installation Piping Example\*



Installation Example for Existing Mechanical Pump\*

# Advanced Technology in a Compact Body

#### Suitable for Equipment with Low Condensate Outlets

existing steam trap

external installation

• Built-in air vent and check valves reduce

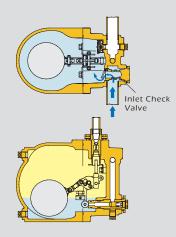
The newly developed high performance snap-action unit allows for a low filling head

#### Highly Durable for a Long Service Life

The highly durable specialized bearing greatly extends the service life of moving parts

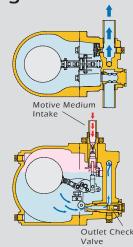


#### Stable and Reliable Operation

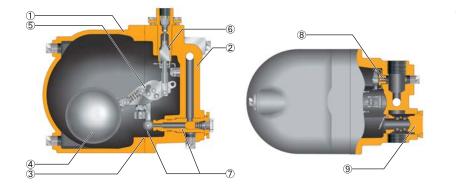

Newly developed integrated motive intake and exhaust valve unit ensures stable operation and reliability.



# Operation


### Condensate Inflow

When condensate flows from the condensate inlet pipe through the inlet check valve into the body of the unit, the float rises and the main valve of the trap unit is open. When the inlet pressure is greater than the back pressure, the condensate passes through the outlet check valve and is discharged through the condensate outlet pipe (normal trapping function). When the back pressure is greater than the inlet pressure, the condensate is not discharged and collects in the body of the unit.



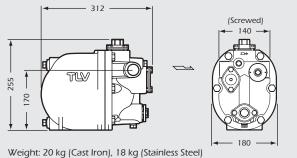

### Condensate Discharge

When the float rises to its 2 highest level, the push rod on the snap-action unit rises quickly, simultaneously closing the exhaust valve and opening the intake (motive medium) valve. The pressure supplied by the motive medium causes the internal pressure in the unit to become greater than the back pressure. The inlet check valve closes and the outlet check valve is pushed open, thus discharging the condensate in the unit through the outlet pipe.



## **Configuration and Specifications**




### Material

| 1          | Body                                | Cast Iron, Stainless Steel |
|------------|-------------------------------------|----------------------------|
| 2          | Cover                               | Cast Iron, Stainless Steel |
| 3          | Cover Gasket                        | Fluorine Resin             |
| 4          | Float                               | Stainless Steel            |
| 5          | Snap-action Unit                    | Stainless Steel            |
| 6          | Intake/Exhaust Valve Unit           | Stainless Steel            |
| $\bigcirc$ | Trap Unit (with Outlet Check Valve) | Stainless Steel            |
| 8          | Air Vent Unit                       | Stainless Steel            |
| 9          | Inlet Check Valve                   | Stainless Steel            |

## **Specifications**

| Connection                  | Pumped Medium Inlet/Outlet   | Screwed                                           |
|-----------------------------|------------------------------|---------------------------------------------------|
| connection                  | Motive Medium & Pump Exhaust | Screwed                                           |
|                             | Pumped Medium Inlet/Outlet   | 25 / 25mm                                         |
| Size                        | Motive Medium Inlet          | 15 mm                                             |
|                             | Pump Exhaust Outlet          | 10 mm                                             |
| Max. Operating Pressure PMO |                              | 0.5 MPaG                                          |
| Max. O                      | perating Temperature TMO     | 185℃                                              |
| Motiv                       | e Medium Pressure Range      | 0.03-0.5 MPaG                                     |
| Maximu                      | um Allowable Back Pressure   | 0.05 MPa less than motive medium<br>pressure used |
| Volum                       | ne of Each Discharge Cycle   | approx. 1.4ℓ                                      |
|                             | Motive Medium                | Saturated steam                                   |
|                             | Pumped Medium                | Steam condensate                                  |

Dimensions



PRESSURE SHELL DESIGN CONDITIONS (NOT OPERATING CONDITIONS):

Maximum Allowable Pressure (MPaG) PMA: 1.0 Maximum Allowable Temperature (°C) TMA: 220

Note: Condensate discharge capacity is shown on the GT5C product specifications data sheet (SDS)

To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside the specification range. Local regulations may restrict this CAUTION | 10 avoid abriothing operation, product below the conditions quoted.

1 MPa = 10.197 kg/cm<sup>2</sup>

# **TLV** INTERNATIONAL, INC.

881 Nagasuna, Noguchi, Kakogawa, Hyogo 675-8511, JAPAN Phone: [81]-(0)79-427-1818 Fax: [81]-(0)79-425-1167 E-mail: tlv-japan@tlv.co.jp





(mm)

Pamphlet M2404-1 Rev.8/2009 Specifications subject to change without notice.